


INTERVIEW

Page 40 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

Page 41 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

How did you get your start in the information 
security field?
Peter N.M. Hansteen: I’ll risk sounding a little blunt 
here, and say that it was really a matter of a series 
of accidents that lead to, well, a known result. Early 
on I had what you might call a rather meandering 
carreer path before I finally started pointing myself in a 
generally IT-ish direction. Fortunately while I was taking 
night classes in IT subjects and working a day job in a 
very junior clerical position at the Norwegian School of 
Economics here in Bergen, I got an early introduction 
to the Internet as it was then in the mid to late 1980s. I 
remember distinctly that a fair number of the machines 
we encountered at the other side of telnet, archie, ftp 
and other services ran something slightly exotic called 
BSD Unix. 

A few job changes later and I found myself in a position 
where I was the person in charge of information security 

and everything IT-ish for myself and about a dozen 
colleagues. As the inevitable Internet commercialization 
came around I had a slight edge after some early 
exposure and hanging around BBSes in the meantime. 
But then again we had some wonderful security failures 
too, as far as I can tell not too dangerous and never 
really breaking anything important, but well, the stories 
are out there in some form if you poke around USENET 
archives. Enterprising readers will know where to look.

What drove you to pursue information 
security?
PNMH: Information security, again, is part of the bigger 
picture. You want to provide a convenient working 
environment as well as making sure you keep your 
colleagues safe from harm, all the while doing your 
best to implement a regime that protects whatever the 
organization’s assets are. For my own part it all grew 

Interview with 

Peter N. M. Hansteen 

Peter N. M. Hansteen is a consultant, writer and 
sysadmin from Bergen, Norway. A longtime 
freenix advocate and during recent years a 
frequent lecturer and tutor with emphasis 
on FreeBSD and OpenBSD, author of several 
articles and The Book of PF (No Starch Press 
2007, 2nd edition November 2010). He writes 
a frequently slashdotted blog at http://
bsdly.blogspot.com/. 

http://nostarch.com/pf2.htm
http://bsdly.blogspot.com/
http://bsdly.blogspot.com/


INTERVIEW

Page 40 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

Page 41 http://pentestmag.comEXTRA 01/2012(5)

EXTRA
out of that motivation. The process was quite gradual. 
And of course gradually you build up a toolchest. There 
are invariably applications or entire environments that 
you would dearly like to do take out of the equation 
that also happens to be something your client can not 
be moved to do without. For my own part I ended up 
with a preference for open source tools in general and 
OpenBSD in particular. That position evolved in part 
from various less pleasant experiences with the various 
proprietary systems, and partly from the rather obvious 
insight that with open source tools, you actually can 
check what the tools do and change or enhance any 
part of the toolchain if you want to.

Then again, whatever you do and how you ever choose 
to run your security efforts, the security bits have to be 
integrated in your environment. Basically the tools and 
procedures need to be part of the normal, ordinary way 
of going about your business. If your strictly enforced 
security regime with tools and procedures get in the 
way of how the organization needs to run its business, 
your users will find ways to subvert your goals and you 
may find yourself exposed. It’s the you made the thing 
foolprof, so they went ahead and created a bigger fool 
problem coming back at you.

What do you see as the biggest challenge 
to information security five years down the 
road?
PNMH: Well, to start with there are four things we can 
be absolutely sure will be as problematic five years from 
now as they are today: Bad design decisions, needlessly 
growing complexity, implementation bugs, and your 
trusted users’ actions, including your own. For the first 
three the constant, ongoing code audit of the type the 
OpenBSD project practices and preaches will give you 
a head start. But apart from stating the obvious, there 
are a few other worrying developments that have been 
happening for a while and have only recently started to 
come to the general public’s at\tention.

One such development is the growing tendency 
of govenments, even Western ones, to demand the 
right to peek ever more closely into people’s private 
information, with little or no accountability. The 
European Union’s Data Retention Directive is one such 
piece of legislation, which mandates that any traffic logs 
you may be generating for your own needs have to be 
kept around for longer than any sane techie would think 
of, just in case law enforcement wants to take a peek. 
You could of course say that the original intentions were 
good and point to the so-called war on terror. But we 
have already seen the motivation morph into the need 
to catch child molesters, then it got tweaked a little more 
to be included as a weapon in the decades-old war on 

drugs and recently it’s been found to be vital in the 
struggle to catch traffic offenders, beaten to the punch 
only by a very misguided chunk of the media publishing 
industry, which for good measure seems to be intent on 
running its own little branch of law enforcement in their 
very own style.

The same ugly picture includes various national laws 
that codify warrantless wiretapping and other forms of 
fine grained surveillance, and there is even legislation 
on the way that mandates various forms of censorship 
that may lead to serious technical issues in the name 
of copyright enforcement. All taken together it looks 
like a fairly thorny path ahead, and it’s worth keeping 
in mind that all of those things that sound scary enough 
for individuals pose a real risk for companies too. To 
some extent we’ve always had industrial espionage, 
but to West Europeans at least the idea that your own 
government could realistically be the ones trying to pry 
into your confidential information is somewhat new and 
quite unpleasant.

At the end of the day, bugs of any kind and social 
engineering will return to bite us, and we won’t be rid of 
either any times. Our adversaries will continue to rely on 
those techniques. Well designed tools and good code, 
validated and audited in full public view will help, as 
will educating your users. Keep in mind too that in this 
context you, the security professional, are very much 
a user yourself, with access to elevated privileges that 
may mean when you do screw up, the situation could 
escalate into something far more dangerous than run of 
the mill user’s goofs.

Does the OpenBSD version numbering 
approach confuse people?
PNMH: I suppose it does confuse people that in 
OpenBSD, the version number is just another identifier, 
and it gets incremented by exactly 0.1 every six 
months.

The reason OpenBSD does it that way is that 
the project has chosen to live by a strict six month 
development cycle. The development cycle is itself split 
into roughly four months of introducing new or improved 
features followed by two months of stabilization leading 
up to cutting a release and sending it off to production at 
some never-preannounced date. For the development 
team this means that large reworks of code will have 
to be split into chunks that will realistically fit within that 
timeframe.

The much-ballyhooed and very useful syntax 
changes that appeared in PF over the OpenBSD 4.6 
and 4.7 releases had in fact been works in progress for 
some years when they hit the tree for general use. For 
last November’s release, 5.0 just happened to be the 



INTERVIEW

Page 42 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

Page 43 http://pentestmag.comEXTRA 01/2012(5)

EXTRA
next increment in line. The release did have some major 
new features, for PF the prio keyword is the first part of 
a new traffic shaping engine that will eventually replace 
the venerable ALTQ when the time comes.

There is kind of a roadmap in place, but the developers 
have not officially commited to a timetable or specific 
release when ALTQ is supposed to be replaced. It will 
happen when the new code is ready and clearly better 
than the older one. When something new and exciting 
is committed, I hope to be one of the first to write a blog 
post about it. My PF tutorials tend to include at least 
some mention of recent developments, too.

Do you believe all the regulations set forth 
regarding information security has helped or 
hindered information security growth?
PNMH: First of all, there is more legislation that’s 
relevant to information security today than there was 
earlier, and security professionals need to be aware of 
what rules apply to them. Some legislation may have 
been beneficial, if for example it was needed in order to 
codify clear standards of ethical conduct. Basically you 
need a working knowledge of what rules apply. So the 
various rules and regulations have made life anything 
from slightly more complicated to somewhat painful in 
recent years, depending on where you are and what 
you do.

If you work in several jurisdictions, you may need to 
get a lawyer or even a judge to affirm which set of rules 
apply in each case, and if the precendence of rules is 
unclear or worse the rules are eve slightly incompatible 
or unclear, your legal fees could become substantial.

Again it’s important to be aware that recent legislation 
in the US and elsewhere written with the intention 
of short-circuiting the normal due process rules in 
certain types of criminal cases, notably those labeled 
‘terrorist’ by the prosecution. Unless those rules are 
found unconstitutional in a hurry, we should expect to 
see information security professionals behind bars for 
indefinite periods soon enough.

Is there a better way to allow root access for 
remote admins?
PNMH: Heh. There has been a lot of discussion on 
just what level of immediate access is appropriate for 
admins when they are in a hurry, but realistically the 
question boils down to this: What level of exposure 
to the various threats, including the risk of your own 
mistakes, is appropriate in your context?

I don’t believe there is an easy one size fits all option 
available. Your analysis of the specific context, with its 
own set of risks and probabilities and anticipated threat 
factors dictates what is appropriate.

But reeling back a bit, your question is really about 
the basic conflict or tradeoff that admins see between 
convenience on the one hand and security on the other 
when they need to access critical devices. It’s so very 
convenient to go directly to the maximally permissive 
settings so you can do anything you like without getting 
caught up in red tape.

When it comes to what constitues acceptable risk, it 
really is up to you. If you, after appropriate risk analysis, 
are confident that logging in to a remote device with 
the highest possible privilege is appropriate, if you are 
equally confident that you can effortlessly recover from 
any mistakes you make while running with maximum 
privilege and you consider the risk that anyone not 
formally authorized to reach that level will manage to do 
so is negigible to non-existent, you are at liberty to go 
directly to root.

I tend to advocate disallowing direct login to any 
privileged account, to encourage use of encryption 
of the strongest practical kind and when appropriate 
and available, key based authentication or some sort 
of two factor authentication system. Mainly because 
I know that I am not infallible, and in some contexts I 
need a reasonable assurance that anyone attempting 
unauthorized access would need to expend enough 
effort that my systems would detect the attempt.

I dislike running with elevated privileges whenever it 
isn’t strictly necessary, mainly because I know that I’m 
human and will make mistakes, and that configurations 
can break in unexpected ways. There are, for example, 
failure modes on some Unix-ish systems that would land 
you with / as your home directory and no warning that’s 
where you are other than – if you’re lucky – a command 
line prompt that looks subtly different from what you are 
used to seeing. In those contexts, it’s essential to do 
the right things, and your confidence that you will have 
grace under pressure will be sorely tested.

A large part of the problem is to ensure that any task 
in the system runs with an appropriate level of privilege. 
In the OpenBSD project, a lot of work has gone into 
properly implementing privilege separation in the various 
daemons. In effect, making sure only those parts of the 
system that need elevated privilege ever achieve that 
privilege, and in most cases the program gives up the 
privilege once the task such as binding to a port below 
1024 has been achieved. The most immediately user-
visible consequence is that you will find the OpenBSD 
password database pre-populated with a number of 
special-purpose users (most of them with names that start 
with an underscore character ‘_’), defined specifically to 
run services at their appropriate privilege levels.

The privilege separated OpenBSD system is out there 
and available for daily use, and I would encourage 



INTERVIEW

Page 42 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

Page 43 http://pentestmag.comEXTRA 01/2012(5)

EXTRA
your readers to try it out. There are interesting efforts 
going on in other projects as well, with the main 
keywords being RBAC or Role Based Access Control 
– essentially a deconstruction of the user authentication 
and authorization (implemented among other places in 
the most recent Solaris releases), and from the opposite 
end of the table, fine grained capabilities models 
for process privilege separation, with the FreeBSD 
project’s Capsicum project (if I understand correctly to 
hit mainstream in FreeBSD 9) on my short list of things 
to look into in the near future.

But the increased complexity that grows naturally 
from these approaches also means the code and 
configuration needed to fit the code to your purposes 
is harder to do correctly, and so we are almost 
certainly entering dangerous territory for that reason 
alone. It will take significant development effort to rein 
in those concepts into something manageable for 
the average sysadmin, assuming we’re also able to 
squash enough bugs in the process to make the effort 
worthwhile.

What new concepts or applications are 
available, or coming available soon, for 
firewalls?
PNMH: The firewalls concept in its simplest form – and 
that’s what people get hung up on – is rather simplistic. 
The main decision is to block or pass. Modern firewalls 
do a lot more of course, including but not restricted 
to failover and redundancy with CARP and pfsync 
or VRRP, network address translation and even 
IPv4 to IPv6 conversion, redirections, load balancing 
and traffic shaping. The good ones even adapt to 
network conditions via adaptive state timeouts or can 
be configured with state tracking tricks that fend off 
excessive traffic of specific kinds.

And of course there is more, but there is a tendency 
for news about interesting technical development to 
drown in marketing hype, so I may be ignoring important 
work that’s going on out there. Personally I think the 
authpf system – OpenBSD’s and PF’s non-interactive 
shell that loads rules on a per user basis – is one type 
of feature that I think will see a lot more attention and 
wider use in the future. It’s so obviously a good thing to 
tie what the network lets you do to your user or group 
identity or to a set of role based criteria. 

Come to think of it, most of these advanced firewall 
features are seriusly under-used and not as well 
understood in the community at large as we could 
have liked. But perhaps the identity or role centric 
setups are the ones with the most scope for interesting 
development over the next few years, if the added 
complexity can be managed somehow.

How does BSD pf compare to iptables, ipfw, 
ipfilter or other firewalls? What is its strength 
or weakness?
PNMH: The short answer, coming as it would from the 
author of The Book of PF, is obvously that the other 
ones suck. But seriously, since I kind of abandoned the 
other ones in favor of PF at some point, I think it’s better 
to at least start answering the question by describing 
some of the features that attracted me to PF over the 
other ones. Then we’ll get around to any weak points if 
we can still remember them after a while. 

It’s important to remember that PF is developed 
as an integrated part of OpenBSD, and one of the 
important design goals has always been that it should 
be very usable for OpenBSD users. This means that 
all the features I’ve touched on earlier are within easy 
reach directly from your pf.conf configuration file or 
somewhere equally accessible. 

One usability feature I appreciate a lot is called atomic 
ruleset load. It’s perhaps easier to explain why this is 
important if we look at the other ones: iptables and ipfw 
configurations are actually shell scripts, where each rule 
is loaded as a separate command. This means that if 
you press [Ctrl-C] while the script is executing, you have 
very little control over what rules are actually enabled. 
More likely than not, some lines of your script were 
never executed, meaning that your configuration did 
not load completely, with unpredictable results. IPfilter’s 
developer apparently did not trust the software to keep 
track of loaded rules by itself and recommended flushing 
previous rules before loading a new configuration.

None of this is necessary with PF – if your rule set is 
syntactically valid, it will load, completely replacing the 
previous one. There is no need to flush existing rules, 
unless you want to make sure you have a a period of ‘pass 
all’ to give miscreants a break until you load the next valid 
rule set, and running a real risk of disrupting valid traffic 
that (think timeouts due to disappearing redirections) that 
would have seen no trouble on a clean ruleset load.

If you think this means that PF configurations are 
totally static, you’re wrong. If you need to adjust the 
contents of your rule set on the fly, your best bet is to 
create what PF calls an anchor – essentially a named 
sub-ruleset, and yes, you can have several – where 
you or applications you write can insert and manipulate 
rules dynamically, something Apple appear to have 
used to great effect in their port to MacOS. Apple even 
wrote some enhancements to the anchor loading code, 
but unfortunately they wrapped their new bits in #ifdefs 
with a separate license, so the extended functionality 
will not easily make it back into the mainstream PF 
code. You can look up my Call for testing article (see 
the references at the end) for more details.



INTERVIEW

Page 44 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

Page 45 http://pentestmag.comEXTRA 01/2012(5)

EXTRA
And of course for simpler operations like singling out 

hosts that need special treatment, you can manipulate 
tables of IP addresses even outside anchors, or 
you can use state tracking options magic to move 
IP addresses into tables, and use the tables in your 
filtering criteria.

From my experience, PF and related tools on 
OpenBSD provides you with the sanest working 
environment available for interacting with the TCP/IP 
stack so you can make your equipment perform the 
way it’s supposed to. None of the other tools come 
even close, in my opinion, in either admin friendliness 
or performance.

Will the next intrusion platform be mobile 
devices?
PNMH: To some extent, or possibly even to a large 
extent, I think the shift has already happened, in the 
sense that the focus of would-be intruders is changing 
more or less in step with the mainstream user and the 
perceived high-value targets. I’m not suggesting that 
the installed base of PCs will be going away anytime 
soon, most of those are well past their use by date 
anyway, but rather that the Windows PCs that today 
still make up the largest part of the installed base are 
destined to become less important over time if current 
trends continue more or less as we see them today. 

Mobile devices are getting a lot of attention these 
days, and malware targeted at them is of course getting 
some too. The situation for mobile devices designers 
today is somewhat parallel to the situation when PCs 
were introduced to the Internet, but there are important 
differences.

One such difference between back then and now is 
that a large part of the PC related business is still aimed 
squarely at patching or working around security bugs 
in the most common desktop operating environment. 
That, and the fact that there are more network-savvy 
developers out there today than at any time earlier 
makes me a little hopeful that at least some of the 
grosser mistakes of PC networking history will not be 
repeated by mobile device developers. Also, so far 
we have avoided the monoculture that helped make 
PCs on the Internet such easy marks. Mobile devices 
vendors have a real choice in software stacks, and 
at least the two dominant operating environments in 
the smartphone space (Apple and Android) are both 
vaguely Unix-based and use open source components 
to some degree, which seems to me like their designers 
are capable of making intelligent decisions.

That said, I’m fairly sure that even in those 
environments, users and miscreants will find ways to 
exploit bugs, and some subset of users will always 

be willing to do things that are simply not smart things 
to do. One example comes to mind – users of Apple 
phones decided that their phones ran a system that was 
unix-like enough that it should be able to accommodate 
a Secure Shell (ssh) server, and somebody managed 
to port the software. Only that developer decided to 
provide a setup with a default password, and there 
were several reports of phones that were taken over via 
ssh, thanks to the known default password that the user 
never bothered to change.

Now I’m geek enough to appreciate the attraction 
of having a shell login to the phone you carry in your 
pocket, but (as I noted in a slashdotted blog post at the 
time) the point here is not that sshd is an insecure piece 
of software. It isn’t. The lack of security comes from not 
bothering to change your password from a well-known 
default value.

Something similar is bound to happen again, where 
a user makes a stupid mistake that has security 
implications. If we’re lucky the damage will be limited 
to the users’s own equipment, but if that user is also a 
developer and by design or accident inserts exploitable 
code in other users’ mobile devices, the damage could 
become more widespread.

It’s also worth keeping in mind that even if mobile 
devices seem relatively boring by modern PC standards 
and may or may not contain useful data, they may still 
be useful to botnet herders. A typical smartphone today 
has general processing power at least on par with a 
run of the mill PC at the time the network dependent 
malware started turning up on the Microsoft platform, 
and it’s almost certainly on a better network connection 
than most PCs were back then. If your smartphone 
doubles as your wallet, all the more reason to pay 
attention.

How can these mobile devices be protected?
PNMH: If the mobile devices industry indeed manages 
to avoid making the same mistakes as the PC industry 
before it, I think we have something of a head start. 
Over the years what passes for IT security has focused 
on enumerating badness (do read Marcus Ranum’s 
essay linked to in the references for more on that) and 
in the process diverting attention from the root cause 
issue that a certain software marketer was, for quite 
some time, reluctant to even acknowledge that there 
were bugs to be found in their software.

It may not have been obvious at the time Marcus was 
writing that essay, but history has taught us that the 
approach the PC industry took to security at the time 
– heaping another level of complexity on top of buggy 
software in the name of security – is not necessarily 
an improvement in real terms, even if the new layer 



INTERVIEW

Page 44 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

Page 45 http://pentestmag.comEXTRA 01/2012(5)

EXTRA

somehow provides a workaround for the nasties you 
know about in the original code. The added complexity 
most likely means that your debugging gets harder for 
the next round of problems.

In a way it would be nice if mobile device designers 
started basing their systems on OpenBSD, which is 
probably the general purpose system that has been 
developed and maintained with the most attention to 
security. I want a phone I can trust, and preferably one 
that’s open enough for qualified developers to hack on. 
And the same applies tablets and other devices too, of 
course.

Regardless of what technology the devices are 
based on, I think a combination of user education and 
operators paying attention to end user equipment is 
the way forward. If operators are able to take some 
of the system administration workload off their end 
users’ hands for a nominal fee, it could turn into a profit 
center.

It really boils down to a sane system administration 
regime – don’t run any services that are not required for 
your use case, log properly and pay attention to what 
your logs say, update your systems at intervals and 
definitely when security relevant bugs have been fixed.

On the other hand, in addition to user education and 
the offer of handholding we may need a measure of 
negative reinforcement – one approach is to mimic the 
way we treat pets or livestock and their owners. Dogs 
and computers both are capable of autonomous actions 
to some extent, so it might be a useful parallel. Dog 
owners are used to cleaning up the messes their pets 
make on sidewalks, and if the animal bites somebody, 
the owner is usually responsible for paying for the 
damage. Sufficiently stupid behavior with regard to 
your pet can sometimes earn you a charge of reckless 
endangerment. I think you can validly argue that a 
similar regime should apply to owners of fairly damage-
capable computing devices.

How can these mobile devices be firewalled?
PNMH: On a technical level, I think that problem is very 
close to being solved. The existing tools could be adapted 
fairly easily to fit a roving user scenario (some people are 
already paying attention), and some of the anticipated 
developments I mentioned earlier may make the devices 
even easier to use. But once again, operators and service 
providers could play a significant role if they manage to 
come up with useful ways to interact with users’ devices. 
And of course we need to stomp out the snake oil 
salesmen, if we can’t scare them off right away by building 
sanely constructed devices with trustworthy software.

How do you even know if someone is 
attempting to access your mobile device or 
using it to run ssh login attempts against 
remote systems?
PNMH: On the current crop of devices, I think you’d be 
blissfully ignorant of any such attempts until either your 
phone starts doing something unexpected or your next 
bill turns up with a lot more traffic to pay for than you 
had expected.

With any of the devices that are vaguely unix-based it 
shouldn’t be very hard to log properly, and once again I 
think operators should be looking seriously into offering 
their users some kind of log monitoring and other admin 
services in order to help run mobile devices sanely. 
Intelligently designed mobile device management services 
could become the real differentiator in the telecom operator 
market. I hope the the operators are paying attention.

And finally, for penetration testers out there, there will 
always be bugs out there to hunt for and exploit, and if 
you have a hard time finding those, you can always go 
for layer 8 or 9 techniques :)

Happy hacking!

By PenTest Team

References
The references are listed in roughly the order they’re mentioned in the text, read them for further treatment of some of the 
issues I mentioned here.

• The OpenBSD project http://www.openbsd.org/
• The FreeSBD project http://www.freebsd.org/
• PF tutorial home page http://home.nuug.no/~peter/pf/
• The Capsicum Project at Cambridge University, http://www.cl.cam.ac.uk/research/security/capsicum/
• How Apple Treats The Gift Of Open Source: The OpenBSD PF Example http://callfortesting.org/macpf/
• The Book of PF (second edition) http://nostarch.com/pf2.htm or from good bookstores everywhere
• Rickrolled? Get Ready for the Hail Mary Cloud! http://bsdly.blogspot.com/2009/11/rickrolled-get-ready-for-hail-mary.html 

(slashdotted as „The Hail Mary Cloud is Growing, Nov 15 2009, http://linux.slashdot.org/story/09/11/15/1653228/the-hail-mary-
cloud-is-growing)

• Marcus Ranum: The Six Dumbest Ideas in Computer Security, http://www.ranum.com/security/computer_security/editorials/
dumb/index.html

http://www.openbsd.org/
http://www.freebsd.org/
http://home.nuug.no/~peter/pf/
http://www.cl.cam.ac.uk/research/security/capsicum/
http://callfortesting.org/macpf/
http://nostarch.com/pf2.htm
http://bsdly.blogspot.com/2009/11/rickrolled-get-ready-for-hail-mary.html
http://linux.slashdot.org/story/09/11/15/1653228/the-hail-mary-cloud-is-growing
http://linux.slashdot.org/story/09/11/15/1653228/the-hail-mary-cloud-is-growing
http://www.ranum.com/security/computer_security/editorials/dumb/index.html
http://www.ranum.com/security/computer_security/editorials/dumb/index.html

	Cover
	EDITOR’S NOTE
	CONTENTS
	XSS & CSRF Practical exploitation of post-authentication vulnerabilitiesin web applications
	Discovering Modern CSRF Patch Failures
	Business Logic Vulnerabilitiesvia CSRF
	XSS Using Shell of the Future
	Cross-Site Request Forgery
	Security Resolutions for 2012
	Interview with Peter N. M. Hansteen



